MASS SPECTROMETRY IN STRUCTURAL AND STEREOCHEMICAL PROBLEMS—XXXVI¹

ALKALOIDS OF PERIWINKLES—27²; THE MASS SPECTRA OF STEREO-ISOMERS OF THE SARPAGINE-AKUAMMIDINE GROUP³

M. OHASHI, H. BUDZIKIEWICZ, J. M. WILSON and CARL DJERASSI Department of Chemistry, Stanford University, Stanford, California

and

J. LÉVY, J. GOSSET, J. LEMEN and M.-M. JANOT Laboratoire de Pharmacie Galénique, Faculté de Pharmacie, Paris, France

(Received 24 June 1963)

Abstract—Mass spectra have been measured of members of the sarpagine-akuammidine group differing in stereochemistry at C-16. Attention is called to possible fallacies in expecting analogous fragmentation behavior of closely related compounds (N_(a)—H vs. N_(a)—Me) if the mechanism of a specific fragmentation is not known. Attention is drawn to the structural information which can be gained from thermal decomposition processes prior to electron impact. The mutual advantages of an all-glass and a direct inlet system are discussed.

THE mass spectra of several alkaloids containing the skeleton of sarpagine (Ia) have been measured⁴⁻⁷ in connection with structural work in this class of indole alkaloids and the general fragmentation behaviour seems well established. This knowledge permits ready recognition of unknown bases belonging to this group and a recent example is the observation that an alkaloid isolated from *Vinca difformis* Pourr.⁸ possesses the same structure as velosimine (Ib)⁹ (no stereochemistry implied), a conclusion reached solely by examination of its mass spectrum and substantiated by comparison with an authentic sample.

Comparison of the spectra of the C-16 stereoisomers polyneuridine (IIa)⁵ and akuammidine (IIIa)¹⁰ allowed a further differentiation between these two alkaloids. The most outstanding difference is a very pronounced loss of water $(m/e\ 334)$ in the spectrum (obtained with the use of an all-glass heated inlet system) of polyneuridine

- ¹ For paper XXXV, see C. Beard, J. M. Wilson, H. Budzikiewicz and C. Djerassi, J. Amer. Chem. Soc. in press.
- ² For part 26, see M. Plat, J. LeMen, M.-M. Janot, H. Budzikiewicz, J. M. Wilson, L. J. Durham and C. Djerassi, *Bull. Soc. Chim. Fr.* 2237 (1962).
- The work at Stanford University was supported by grant No. A-4257 from the National Institutes of Health, U.S. Public Health Service.
- ⁴ K. Biemann, J. Amer. Chem. Soc. 83, 4801 (1961); see also M. Gorman, A. L. Burlingame and K, Biemann, Tetrahedron Letters 39 (1963).
- ⁵ L. D. Antonaccio, N. A. Pereira, B. Gilbert, H. Vorbrueggen, H. Budzikiewicz, J. M. Wilson, L. J. Durham and C. Djerassi, J. Amer. Chem. Soc. 84, 2162 (1962).
- ⁶ E. Clayton, R. I. Reed and J. M. Wilson, Tetrahedron 18, 1449 (1962).
- ⁷ G. Spiteller, C. Brunné, K. Heyns and H. F. Grützmacher, Z. Naturforsch., 17b, 856 (1962).
- ⁸ J. Gosset, J. LeMen and M.-M. Janot, unpublished results.
- ⁹ H. Rapaport and R. E. Moore, J. Org. Chem. 27, 2981 (1962).
- ¹⁰ J. Lévy, J. LeMen and M.-M. Janot, C. R. Acad. Sci., Paris 253, 131 (1961).

(IIa, Fig. 2) which is absent in that of akuammidine (IIIa, Fig. 1). An explanation for the ready loss of water from polyneuridine (IIa) was given⁵ by assuming the operation of a six membered transition state as indicated by the arrows in II to give IV, which would be sterically impossible in III because of the inverted stereochemistry at C-16.

The resulting configuration of polyneuridine (IIa) was consistent with the one established by chemical interrelation with vincamajine¹¹ and macusine A,¹¹ the relative configuration of which had been established by X-ray studies.¹² Furthermore, the stereochemistry of akuammidine (IIIa) has been secured by another X-ray analysis.¹³ The mass spectroscopic arguments found some support in the observation that both polyneuridine acetate (IIb; Fig. 6) and its d₂-analog containing a CD₂OAc group readily lost the elements of acetic acid (M-60), while akuammidine acetate (IIIb; Fig. 5) did not show this type of fragmentation. This striking difference in the fragmentation behavior of compounds differing solely in the stereochemistry at C-16 seemed to offer a simple means for determining the configuration at this center.

11 M.-M. Janot, J. LeMen, J. Gosset and J. Lévy, Bull. Soc. Chim. Fr. 1079 (1962).

¹² A. T. McPhail, J. M. Robertson, G. A. Sim, A. R. Battersby, H. F. Hodson and D. A. Yeowell, Proc. Chem. Soc. 223 (1961).

¹⁸ S. Silvers and A. Tulinsky, Tetrahedron Letters 839 (1962).

In order to test the validity of this method, we decided to measure the spectra of several additional representatives of this group. One of these was vincamajine alcohol ester acetate, prepared from vincamajine¹¹ and therefore presumed to possess structure IIc. The mass spectrum (Fig. 9) of this compound—measured with the use of a heated inlet system—clearly exhibited an M-59, but no M-60 peak. This finding suggested that vincamajine alcohol ester acetate should be represented by IIIc rather than by IIc. Similarly, Reed et al.⁶ concluded that voachalotine¹⁴ (which has been demonstrated¹¹ to be identical with vincamajine alcohol ester) should be N-methylakuammidine (IIId) rather than N-methylpolyneuridine (IId). Neither one of these conclusions is compatible with the chemical¹¹ and X-ray^{12,13} results.

An explanation for this inconsistency could consist in a different fragmentation behavior of compounds bearing an $N_{(a)}$ -Me group compared with those possessing a hydrogen atom on the indole nitrogen. In order to check this possibility, the mass spectra of deoxyajmalol A and B acetate (Ic and Id)¹⁵ were measured, and turned out to be essentially identical, both exhibiting a very pronounced loss of 59 rather than 60 mass units. Since the C-16 isomeric alkaloids possessing an $N_{(a)}$ -hydrogen atom exhibit different fragmentation patterns (using a heated inlet system) as compared to their $N_{(a)}$ -methyl homologs, it can be deduced that the presence of the $N_{(a)}$ -hydrogen atom is essential for the loss of either acetic acid or water. The mechanism⁵ implied by the arrows in II and involving the hydrogen on C-6 can therefore not be operative. This was demonstrated further by measuring the spectrum of $N_{(a)}$ -deuterated polyneuridine acetate (IIe) which exhibited a loss of 61 (CH₃CO₂D) rather than 60 mass units (CH₃CO₂H). For this reason the following mechanism (V \rightarrow VI) for the loss of acetic acid (or water) from alkaloids of the polyneuridine type seems more adequate.

¹⁴ N. Defay, M. Kaisin, J. Pecher and R. H. Martin, Bull. Soc. Chim. Belg. 70, 475 (1961).

We wish to thank Drs. W. I. Taylor and M. F. Bartlett for samples of the two alcohols (cf. M. F. Bartlett, R. Sklar, W. I. Taylor, E. Schlittler, R. L. S. Amai, P. Beak, N. V. Bringi and E. Wenkert, J. Amer. Chem. Soc. 84, 622 (1962) and Dr. Y. Nakagawa of this laboratory for the preparation of the two acetates.

This reaction is reminiscent of the cyclization effected by heating deoxyajmalol-A tosylate (VII) to yield VIII,¹⁶ and thus aroused the suspicion that the loss of water from polyneuridine (IIa) and of acetic acid from polyneuridine acetate (IIb) occurred by heating prior to electron impact. This assumption could be substantiated by measuring the spectra of polyneuridine (IIa; Fig. 4) and akuammidine (IIIa; Fig. 3) as well as those of their acetates (IIb and IIIb; Figs. 8 and 7) using a direct inlet system¹⁷ which is known to cause minimal thermal decomposition. Under these conditions, neither the loss of water from IIa nor the loss of acetic acid from IIb could be observed.

These observations clearly indicate that the conclusions derived from free NH-compounds concerning the loss of water or acetic acid cannot be extended to their N-methylated analogs and therefore that the above stated deductions concerning the stereochemistry at C-16 of vincamajine alcohol ester acetate (IIc) and voachalotine (IId)⁶ (= vincamajine alcohol ester¹¹) are not valid. The apparent inconsistencies of the mass spectral conclusions with chemical and X-ray evidence are thus resolved.¹⁸

These examples demonstrate how much caution has to be exercised in explaining a certain fragmentation process by an "obvious" though unproved mechanism, especially if it is applied to related compounds. Futhermore, our results show that both the direct¹⁷ and the heated all-glass inlet system can have their particular advantages. The former minimizes the catalytic and thermal decomposition and in the present case furnishes very similar spectra of stereoisomers and N-methyl homologs, thus allowing a direct comparison. The heated glass inlet system, besides offering more reproducible spectra, ¹⁹ may furnish additional structural information²⁰ specifically because of the thermal decomposition which in this instance was shown to be subject to stereochemical features.

All spectra were measured with a CEC 21-103C mass spectrometer using either a heated all-glass inlet system (200°) or a direct inlet system.¹⁷ The ionizing current was maintained at 50 μ A and the ionizing energy at 70 eV.

- ¹⁶ M. F. Bartlett, B. F. Lambert, H. M. Werblood and W. I. Taylor, J. Amer. Chem. Soc. 85, 475 (1963).
- ¹⁷ J. F. Lynch, J. M. Wilson, H. Budzikiewicz and C. Djerassi, Experientia 19, 211 (1963).
- ¹⁸ On the other hand, spectra obtained with a normal (heated) glass inlet system of compounds with an unsubstituted indole nitrogen may well be used for stereochemical assignments. As anticipated, vincamajine alcohol ester acetate (IIc)¹¹ gives the same fragmentation pattern using either a heated glass (Fig. 9) or a direct (Fig. 10) inlet system.
- 19 The glass inlet system allows more even heating and a steadier gas flow than the direct one, the latter giving rise to comparatively minor, but recognizable, changes in the relative intensities of the peaks in different runs of the same substance.
- ³⁰ It should be mentioned that R. I. Reed in one of his early papers on electron impact phenomena (J. Chem. Soc. 3432 (1958)) pointed out this possibility.

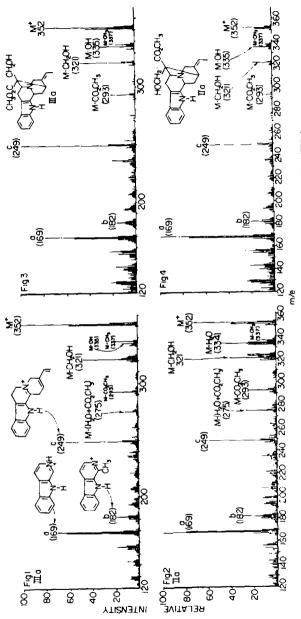


Fig. 1, Mass spectrum (200° glass inlet system) of akuammidine (IIIa).
 Fig. 2. Mass spectrum (200° glass inlet system) of polyneuridine (II₂).
 Fig. 3. Mass spectrum (direct inlet system) of akuammidine (IIIa).

Fig. 4. Mass spectrum (direct inlet system) of polyneuridine (IIa).

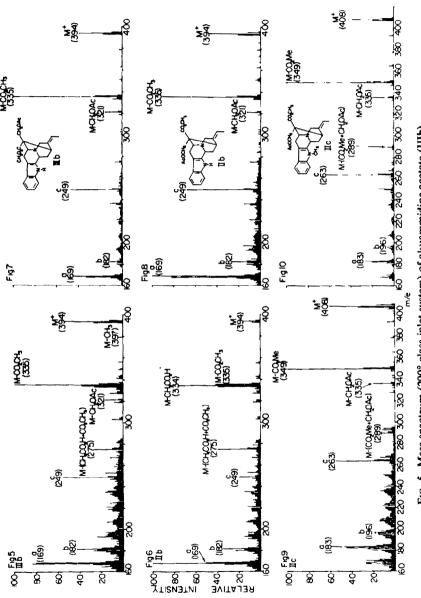


Fig. 5. Mass spectrum (200° glass inlet system) of akuammidine acetate (IIIb).

Fig. 6. Mass spectrum (200° glass inlet system) of polyneuridine acetate (IIb).
Fig. 7. Mass spectrum (direct inlet system) of akuammidine acetate (IIIb).

Fig. 8. Mass spectrum (direct inlet system) of polyneuridine acetate (IIb).

Fig. 9. Mass spectrum (200° glass inlet system) of vincamajine alcohol ester acetate (IIc). Fig. 10. Mass spectrum (direct inlet system) of vincamajine alcohol ester acetate (IIc).